Modeling and Analysis of Data-Driven Systems through Computational Neuroscience Wavelet-Deep Optimized Model for Nonlinear Multicomponent Data Forecasting

Author:

Jin Xue-Bo123ORCID,Zhang Jia-Hui123ORCID,Su Ting-Li123ORCID,Bai Yu-Ting123ORCID,Kong Jian-Lei123ORCID,Wang Xiao-Yi123ORCID

Affiliation:

1. School of Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China

2. China Light Industry Key Laboratory of Industrial Internet and Big Data, Beijing Technology and Business University, Beijing 100048, China

3. Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University, Beijing 100048, China

Abstract

Complex time series data exists widely in actual systems, and its forecasting has great practical significance. Simultaneously, the classical linear model cannot obtain satisfactory performance due to nonlinearity and multicomponent characteristics. Based on the data-driven mechanism, this paper proposes a deep learning method coupled with Bayesian optimization based on wavelet decomposition to model the time series data and forecasting its trend. Firstly, the data is decomposed by wavelet transform to reduce the complexity of the time series data. The Gated Recurrent Unit (GRU) network is trained as a submodel for each decomposition component. The hyperparameters of wavelet decomposition and each submodel are optimized with Bayesian sequence model-based optimization (SMBO) to develop the modeling accuracy. Finally, the results of all submodels are added to obtain forecasting results. The PM2.5 data collected by the US Air Quality Monitoring Station is used for experiments. By comparing with other networks, it can be found that the proposed method outperforms well in the multisteps forecasting task for the complex time series.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3