Evaluation Method for Vibration Measurement on Casing in Aeroengine: Theoretical Analysis and Experimental Study

Author:

Hou Lanlan123,Cao Shuqian123ORCID

Affiliation:

1. Department of Mechanics, Tianjin University, Tianjin 300354, China

2. Tianjin Key Laboratory of Nonlinear Dynamics and Control, Tianjin 300354, China

3. National Demonstration Center for Experimental Mechanics Education (Tianjin University), Tianjin 300354, China

Abstract

The vibration measurement location is the basis for effective monitoring of aeroengine vibration conditions. Measurement locations need to reflect the vibration of the rotor sufficiently, while complex structures of the aeroengine bring many excitation sources. This paper presents an evaluation methodology for vibration measurement on casing in the aeroengine. A number of indexes are defined to quantify and characterize the vibration measurement ability of main measurement locations on casing for rotor vibration. A dynamic model of a dual-rotor-casing system is established according to the support structure of a certain type of aeroengine. By means of the introduced evaluation method, the vibration relation between rotors and the main vibration measurement sections is analyzed. Response characteristics and performance orders of measurement sections are given. The rationality of theoretical results is sound verified by experiments on a designed pneumatic-driven double-rotor-casing test bench. The best measured vibration section is consistent with the actual on-board vibration section of the engine, which further demonstrates the effectiveness of the evaluation method. The research results can provide a basis for the selection and optimization of vibration measurement locations and fault diagnosis in the aeroengine. Furthermore, the application of this method is not limited to aeroengine vibration analysis and sensor measurement location optimization, but will be useful for vibration analysis of other rotating machinery.

Funder

973 Program of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3