Nonlinear Dynamic Analysis on Dual‐Rotor‐Bearing‐Casing System for Marine Gas Turbine

Author:

Xing Zhikai,Wang QiangORCID,Liu YongbaoORCID,Li Mo,Zhang Xin

Abstract

Taking the marine gas turbine as a research background, a dual‐rotor‐bearing‐casing system model was established considering the bearing nonlinearities and unbalanced excitation. Based on Lagrange’s equation of motion and rotor dynamics theory, the effects of key parameters such as radial clearance of intershaft bearing, rotor mass eccentricity, and rotational speed on the nonlinear characteristics of the system are investigated. The results indicate that the typical parameters have a significant effect on the system’s nonlinearities. To alleviate the vibration jump phenomenon, the radial clearance should be reduced to improve the coupling between the high‐ and low‐pressure rotors. Reducing the mass eccentricity can effectively degrade the resonance peaks, but it will highlight the hard resonance characteristics. The work process should pass through the resonant‐speed regions and the low‐speed regions of start‐stop phase as soon as possible. The research findings contribute to understanding the nonlinear dynamic characteristics of dual‐rotor systems, providing a theoretical basis for their stable operation and the optimal design of working speeds.

Funder

National Science and Technology Major Project

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3