Human Tongue Thermography Could Be a Prognostic Tool for Prescreening the Type II Diabetes Mellitus

Author:

Thirunavukkarasu Usharani1,Umapathy Snekhalatha1ORCID,Krishnan Palani Thanaraj2ORCID,Janardanan Kumar3

Affiliation:

1. Department of Biomedical Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India

2. Department of Electronics & Instrumentation Engineering, St. Joseph’s College of Engineering, Chennai 600119, Tamil Nadu, India

3. Department of General Medicine, SRM Hospital & Research Centre, Kattankulathur 603203, Tamil Nadu, India

Abstract

Diabetes mellitus is one of the life threatening diseases over the globe, and an early prediction of diabetes is of utmost importance in this current scenario. International Diabetes Federation (IDF) reported nearly half of the world’s population was undiagnosed and unaware of being developed into diabetes. In 2017, around 84 million individuals were living with diabetes, and it might increase to 156 million by the end of 2045 stated by IDF. Generally, the diagnosis of diabetes relies on the biochemical method that may cause uneasiness and probability of infections to the subjects. To overcome such difficulties, a noninvasive method is much needed around the globe for primary screening. A change in body temperature is an indication of various diseases. Infrared thermal imaging is relatively a novel technique for skin temperature measurement and turned out to be well known in the medical field due to being noninvasive, risk-free, and repeatable. According to traditional Chinese medicine, the human tongue is a sensitive mirror that reflects the body’s pathophysiological condition. So, we have (i) analysed and classified diabetes based on thermal variations at human tongue, (ii) segmented the hot spot regions from tongue thermogram by RGB (red, green, blue) based color histogram image segmentation method and extracted the features using gray level co-occurrence matrix algorithm, (iii) classified normal and diabetes using various machine learning algorithms, and (iv) developed computer aided diagnostic system to classify diabetes mellitus. The baseline measurements and tongue thermograms were obtained from 140 subjects. The measured tongue surface temperature of the diabetic group was found to be greater than normal. The statistical correlation between the HbA1c and the thermal distribution in the tongue region was found to be r2 = 0.5688. The Convolutional Neural Network has outperformed the other classifiers with 94.28% accuracy rate. Thus, tongue thermograms could be used as a preliminary screening approach for diabetes prognosis.

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3