Diagnosis of Lumbar Spondylolisthesis Using a Pruned CNN Model

Author:

Saravagi Deepika1ORCID,Agrawal Shweta2ORCID,Saravagi Manisha3ORCID,Rahman Md Habibur4ORCID

Affiliation:

1. Department of Computer Application, SAGE University, Indore 452012, India

2. IAC, SAGE University, Indore 452012, India

3. Physiotherapy Department, Railway Hospital, Kota, Rajasthan 324002, India

4. Department of Computer Science and Engineering, Islamic University, Kushtia-7003, Bangladesh

Abstract

Convolutional neural network (CNN) models have made tremendous progress in the medical domain in recent years. The application of the CNN model is restricted due to a huge number of redundant and unnecessary parameters. In this paper, the weight and unit pruning strategy are used to reduce the complexity of the CNN model so that it can be used on small devices for the diagnosis of lumbar spondylolisthesis. Experimental results reveal that by removing 90% of network load, the unit pruning strategy outperforms weight pruning while achieving 94.12% accuracy. Thus, only 30% (around 850532 out of 3955102) and 10% (around 251512 out of 3955102) of the parameters from each layer contribute to the outcome during weight and neuron pruning, respectively. The proposed pruned model had achieved higher accuracy as compared to the prior model suggested for lumbar spondylolisthesis diagnosis.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3