TO ANALYZE THE LUNGS X-RAY IMAGES USING MACHINE LEARNING ALGORITHM: AN IMPLEMENTATION TO PNEUMONIA DIAGNOSIS

Author:

Agrawal Saroj,Kumar Gupta Yogesh

Abstract

Introduction: Respiratory diseases, particularly pneumonia, pose a significant threat to human life. Pneumonia affects the respiratory function in the human body and is a dangerous lung disease. This study aims to propose a model for detecting pneumonia in chest XR images. By utilizing statistical-based features, relevant and informative features are extracted from lung X-ray images. Objective: The objective is to obtain high accuracy in pneumonia identification; the target of this work is to generate a model that can precisely recognize the presence of pneumonia by evaluating chest X-ray pictures. Method: The Method follows a three-phase approach: preprocessing, categorization, and extraction of features. Preprocessing is the stage when various filters are applied to the chest X-ray images to enhance their eminence and eradicate noise. The feature extraction phase involves extracting statistical-based features from the preprocessed images. These features capture relevant information regarding a pneumonia diagnosis. Finally, in the classification phase, algorithms for machine learning are employed to use the retrieved features to categorize the X-ray pictures as infected or uninfected. Result: The proposed model successfully detects the presence of pneumonia accurately. By leveraging advanced machine learning algorithms, the model achieves accurate X-ray image classification for the chest. Conclusion: This study concludes by presenting a model for detecting pneumonia by examining chest X-ray pictures. To accurately classify infected and non-infected lungs, the proposed model makes use of image dispensation methods and machine learning algorithms. The model's high accuracy in pneumonia detection can significantly contribute to early diagnosis and treatment.

Publisher

Suranaree University of Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3