Affiliation:
1. Department of Stomatology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, China
2. Institute of Automation, Chinese Academy of Sciences, China
Abstract
The objective of this study is to improve traditional convolutional neural networks for more accurate children dental caries diagnosis on panoramic radiographs. A context aware convolutional neural network (CNN) is proposed by considering information among adjacent teeth, based on the fact that caries of teeth often affects each other due to the same growing environment. Specifically, when performing caries diagnosis on a tooth, information from its adjacent teeth will be collected and adaptively fused for final classification. Children panoramic radiographs of 210 patients with one or more caries and 94 patients without caries are utilized, among which there are a total of 6028 teeth with 3039 to be caries. The proposed context aware CNN outperforms typical CNN baseline with the accuracy, precision, recall,
score, and area-under-the-curve (AUC) being 0.8272, 0.8538, 0.8770, 0.8652, and 0.9005, respectively, showing potential to improve typical CNN instead of just copying them in previous works. Specially, the proposed method performs better than two five-year attending doctors for the second primary molar caries diagnosis. Considering the results obtained, it is beneficial to promote CNN based deep learning methods for assisting dentists for caries diagnosis in hospitals.
Subject
Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献