Preliminary Study of Dental Caries Detection by Deep Neural Network Applying Domain-Specific Transfer Learning

Author:

Kawazu ToshiyukiORCID,Takeshita YoheiORCID,Fujikura Mamiko,Okada Shunsuke,Hisatomi Miki,Asaumi Junichi

Abstract

Abstract Purpose The purpose of this study is to confirm whether it is possible to acquire a certain degree of diagnostic ability even with a small dataset using domain-specific transfer learning. In this study, we constructed a simulated caries detection model on panoramic tomography using transfer learning. Methods A simulated caries model was trained and validated using 1094 trimmed intraoral images. A convolutional neural network (CNN) with three convolution and three max pooling layers was developed. We applied this caries detection model to 50 panoramic images and evaluated its diagnostic performance. Results The diagnostic performance of the CNN model on the intraoral film was as follows: C0 84.6%; C1 90.6%; C2 88.6%. Finally, we tested 50 panoramic images with simulated caries insertion. The diagnostic performance of the CNN model on the panoramic image was as follows: C0 75.0%, C1 80.0%, C2 80.0%, and overall diagnostic accuracy was 78.0%. The diagnostic performance of the caries detection model constructed only with panoramic images was much lower than that of the intraoral film. Conclusion Domain-specific transfer learning methods may be useful for saving datasets and training time (179/250).

Funder

Okayama University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3