Cadmium Sulfide Thin Films Deposited onto MWCNT/Polysulfone Substrates by Chemical Bath Deposition

Author:

Moreno M.1,Alonzo-Medina G. M.1,Oliva A. I.2ORCID,Oliva-Avilés A. I.1ORCID

Affiliation:

1. División de Ingeniería y Ciencias Exactas, Universidad Anáhuac Mayab, Carretera Mérida-Progreso Km. 15.5 AP 96 Cordemex, 97310 Mérida, YUC, Mexico

2. Centro de Investigación y de Estudios Avanzados del IPN, Unidad Mérida, Departamento de Física Aplicada, AP 73 Cordemex, 97310 Mérida, YUC, Mexico

Abstract

Cadmium sulfide (CdS) thin films were deposited by chemical bath deposition (CBD) onto polymeric composites with electric field-aligned multiwall carbon nanotubes (MWCNTs). MWCNT/polysulfone composites were prepared by dispersing low concentrations of MWCNTs within dissolved polysulfone (PSF). An alternating current electric field was “in situ” applied to align the MWCNTs within the dissolved polymer along the field direction until the solvent was evaporated. 80 μm thick solid MWCNT/PSF composites with an electrical conductivity 13 orders of magnitude higher than the conductivity of the neat PSF were obtained. The MWCNT/PSF composites were subsequently used as flexible substrates for the deposition of CdS thin films by CBD. Transparent and adherent CdS thin films with an average thickness of 475 nm were obtained. The values of the energy band gap, average grain size, rms roughness, crystalline structure, and preferential orientation of the CdS films deposited onto the polymeric substrate were very similar to the corresponding values of the CdS deposited onto glass (conventional substrate). These results show that the MWCNT/PSF composites with electric field-tailored MWCNTs represent a suitable option to be used as flexible conducting substrate for CdS thin films, which represents an important step towards the developing of flexible systems for photovoltaic applications.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3