Robust Crater Detection Algorithm Based on Maximum Entropy Threshold Segmentation

Author:

Wu Peng1ORCID,Mu Rongjun1ORCID,Deng Yanpeng1

Affiliation:

1. School of Astronautics, Harbin Institute of Technology, Harbin, China

Abstract

For future lunar exploration and planetary missions, the digital elevation model (DEM) of the target object may not be well prepared before the mission, so developing a new robust crater detection algorithm (CDA) without prepared high-precision DEM is needed to meet the requirements of a high-reliability and high-precision detection and navigation system. In this paper, we presented a new robust lunar CDA method based on maximum entropy threshold segmentation. By calculating the entropy distribution of the ternary image, the threshold for retaining the maximum amount of image information is selected adaptively, a variety of evaluation indicators are proposed, and a multiple-indicator constraint matrix is constructed to realize the extraction and fitting of the craters. The proposed method has the following advantages: (1) it has strong robustness and is capable of extracting complete craters under multiple illumination conditions, which makes it suitable for the extraction of large-scale planetary and lunar images; (2) the extracted crater edges are clear and complete and do not merge with the surrounding environment edge; and (3) it avoids the problem of parameter sensitivity that is present in a traditional CDA algorithm. The proposed method was verified using an image taken by the Chang’e-2 lunar probe, and a comparison with the traditional method based on morphology and adaptive Canny edge detection shows that the number of craters detected increases by more than 35%, while the computational efficiency is improved by more than 40%.

Funder

Fourth Batch of Manned Space Preresearch Projects

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Reference41 articles.

1. Lunar Laser Ranging: A Continuing Legacy of the Apollo Program

2. Apollo lunar descent guidance

3. Primary scientific results of Chang’E-1 lunar mission

4. Solid-state laser for laser altimeter in Chang’e Lunar Explorer;W. Chen

5. Design of Chang’e-4 lunar farside soft-landing mission;W. Wu;Journal of Deep Space Exploration,2017

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3