Optical Navigation Method and Error Analysis for the Descending Landing Phase in Planetary Exploration

Author:

Mu Rongjun,Wu Peng,Deng Yanpeng,Song Haofan

Abstract

To solve the problem of high-precision optical navigation for the descent landing of lunar and planetary probes, an optical navigation method based on the spatial position distribution model is proposed. The method is based on crater detection, and an imaging cosine equivalent mathematical model based on the correspondence of crater objects is constructed. The geometric distribution of the probe spatial position is described to form an Abelian Lie group spatial torus to achieve absolute positioning for parametric optical navigation, Finally, the effect of the measurement error of crater detection on the positioning and attitude of the optical navigation system is discussed, with a fitted ellipse used as a typical analysis object. The effects of different crater distribution configurations and different detection errors on the performance of the proposed optical navigation algorithm are analyzed. The results of Monte Carlo simulation experiments showed that the algorithm proposed in this paper had the advantages of high stability, high accuracy, and good real-time performance, compared with existing methods.

Funder

the Fourth Batch of Pre-research on Manned Spaceflight

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference20 articles.

1. Lunar Spatial Exploration, Surveying and Mapping;Chen;Acta Geod. Cartogr. Sin.,2005

2. Lunar Crater Identification in Digital Images

3. Perspective Reconstruction of a Spheroid from an Image Plane Ellipse

4. Automated Crater Detection Method Using Gray Value Features and Planet Landing Navigation Research;Chen;J. Astronaut.,2014

5. A global solution for the gravity field, rotation, landmarks, and ephemeris of Eros;Konopliv;Proceedings of the 16th International Symposium on Space Flight Dynamics,2001

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3