Efficient Removal of Basic Fuchsin from Synthetic Medical Wastewater and Competitive Adsorption in the Mixture

Author:

Ahmed Harez1ORCID,Salihi Kareem1,Kaufhold Stephan2,Aziz Bakhtyar3ORCID,Radha Musa Hama1,Karim Lava1,Nooralddin Hevi1

Affiliation:

1. Department of Chemistry, College of Science, University of Sulaimani, Sulaimanyah, 46001, Iraq

2. Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, 30655 Hannover, Germany

3. Department of Nano-Science and Applied Chemistry, College of Medical and Applied Sciences, Charmo University, Chamchamal, 46023, Iraq

Abstract

The Ziehl-Neelsen stain is a mixture of Basic Fuchsin (BF), phenol (Ph), and methylene blue. It is used to stain the cell walls of Mycobacterium species. In this study, Basic Fuchsin was efficiently removed from synthetic wastewater using natural clay of Gankawa (GC) from Sulaimanyah city, and the effect of the presence of high concentrations of phenol in the adsorption mixture is demonstrated. In addition, X-ray diffraction (XRD), X-ray fluorescence (XRF), N2 gas adsorption analyzer, and field-emission scanning electron microscopy (FESEM) were used to characterize the natural clay. The clay was found to be mostly calcite, with a minor percentage of smectite, and contaminated with low percentages of illite. The adsorption kinetics show a relatively fast equilibration time (60-70 minutes). A second-order pseudokinetic model better fits the experimental kinetic data. The effect of the initial pH of the solution mixture was negligible at the experimental concentration range of the study. Freundlich and Langmuir’s adsorption isotherm models were applied to the equilibrium experimental data using nonlinear regression curve fitting. Both kinetics and isotherm studies point to a chemical adsorption mechanism for the process. For adsorption in the mixture, phenol molecules were found to compete with BF molecules for the active adsorption sites, while a synergetic effect of BF exists on phenol adsorption. As a naturally abundant cheap material, GC shows a superior adsorption capacity toward BF (287.0 mg g-1) over all natural materials and most of the synthetic or modified materials found in the literature.

Publisher

SAGE Publications

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3