DP-FPGA: An FPGA Architecture Optimized for Datapaths

Author:

Cherepacha Don1,Lewis David1

Affiliation:

1. Dept. of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 1A4, Canada

Abstract

This paper presents a new Field-Programmable Gate Array (FPGA) architecture which reduces the density gap between FPGAs and Mask-Programmed Gate Arrays (MPGAs) for datapath oriented circuits. This is primarily achieved by operating on data as a number of identically programmed four-bit slices. The interconnection network incorporates distinct sets of resources for routing control and data signals. These features reduce circuit area by sharing programming bits among four-bit slices, reducing the total number of storage cells required.This paper discusses the requirements of logic blocks and routing structures that can be used to implement typical circuits containing a number of regularly structured datapaths of various sizes, as well as a small number of irregularities. It proposes a specific set of logic block architectures and analyzes it empirically. Experimental results show that the block with the smallest estimated area contains the following features: a lookup table with four read ports, a dedicated carry chain using a bidirectional four-bit carry skip circuit, a four-bit register with enable and direct input capabilities, and four three-state buffers. Further estimates of implementation area predict that the area of a design's datapath can be reduced by a factor of approximately two compared to a conventional FPGA through the use of programming bit sharing.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Hardware and Architecture

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High-Performance Reconfigurable Computing;Advances in Computer and Electrical Engineering;2019

2. High-Performance Reconfigurable Computing;Encyclopedia of Information Science and Technology, Fourth Edition;2018

3. Synthesis Methodology of Polymorphic Circuits Using Polymorphic NAND/NOR Gates;2015 17th UKSim-AMSS International Conference on Modelling and Simulation (UKSim);2015-03

4. Reconfigurable Platform with Polymorphic Digital Gates and Partial Reconfiguration Feature;2014 European Modelling Symposium;2014-10

5. Utilizing multi-bit connections to improve the area efficiency of unidirectional routing resources for routing multi-bit signals on FPGAs;Microprocessors and Microsystems;2012-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3