Crude Oil Source Identification of Asphalt via ATR-FTIR Approach Combined with Multivariate Statistical Analysis

Author:

Ren Ruibo1,Fan Wenmiao1,Zhao Pinhui1ORCID,Zhou Hao1,Meng Weikun1,Ji Ping2

Affiliation:

1. Shandong Provincial Key Laboratory of Road and Traffic Engineering in Colleges and Universities, School of Transportation Engineering, Shandong Jianzhu University, Jinan 250101, China

2. Shandong Hi-Speed Engineering Testing Co., Ltd., Jinan 250101, China

Abstract

The types of crude oil for producing asphalt have a decisive influence on various performance measures (including aging resistance and durability) of asphalt. To discriminate and predict the crude oil source of different asphalt samples, a discrimination model was established using 12 greatly different infrared (IR) characteristic absorption peaks (CAPs) as predictive variables. The model was established based on diverse fingerprint recognition technologies (such as principal component analysis (PCA) and multivariate logistic regression analysis) by using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). In this way, the crude oil source of different asphalt samples can be effectively discriminated. At first, by using PCA, the 12 CAPs in the IR spectra of asphalt samples were subjected to dimension reduction processing to control the variables of key factors. Moreover, the scores of various principal components in asphalt samples were calculated. Afterwards, the scores of principal components were analysed through modelling based on multivariate logistic regression analysis to discriminate and predict the crude oil source of different asphalt samples. The result showed that the logistic regression model shows a favourable goodness of fit, with the prediction accuracy reaching 93.9% for the crude oil source of asphalt samples. The method exhibits some outstanding advantages (including ease of operation and high accuracy), which is important when controlling the source and quality and improving the performance of asphalt.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3