Affiliation:
1. School of Electronics Engineering, VIT University, Vellore, Tamil Nadu, India
2. School of Electrical Engineering, VIT University, Vellore, Tamil Nadu, India
Abstract
The densification of serving nodes is one of the potential solutions to maximize the spectral efficiency per unit area. This is preposterous on account of conventional base stations (BS) for which site procurement is costly. Long term evolution-advanced (LTE-A) defines the idea of heterogeneous networks (HetNets), where BSs with different coverage and capacity are utilized to guarantee the quality of service (QoS) requirements of the clients. To maximize the transmission quality of the clients in the coverage holes, LTE-A also defines multihop relay (MHR) networks, where the relay stations (RSs) are also placed along with the BSs. Unfortunately, the placement approaches for HetNet and MHR serving nodes are not standardized. In this work, two different approaches like site selection with maximum service coverage (SSMSC) and site selection with minimum placement cost (SSMPC) are proposed, which identifies the required number of serving nodes, their types, and the placement locations to maximize the coverage and to maintain the placement cost (PC) within the limits of the total placement budget. The simulation results demonstrate that the proposed approaches are computationally less complex and offer enhanced performance in terms of aggregate PC, coverage, and power proportion compared to the other conventional approaches.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献