A Three-Stage Fuzzy-Logic-Based Handover Necessity Estimation and Target Network Selection Scheme for Next Generation Heterogeneous Networks

Author:

Subramani Meenakshi1,Kumaravelu Vinoth Babu1ORCID

Affiliation:

1. School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India

Abstract

The network performance is an imperative factor for the customers to select a mobile network operator (MNO). The customers demand seamless mobility and services with minimal packet loss and ultra-low latency from the subscribed MNO. Device-to-Device (D2D) communication is one of the key enabling solutions of fifth generation (5G), which has the potential to enhance throughput, latency, packet loss rate (PLR) performances of the network. 5G is expected to support high mobility and smaller range heterogeneous cells. This leads to frequent handovers. The unessential handovers may cause wastage of network resources. The improper network selection may prompt extreme quality degradation. In this work, a three-stage fuzzy-logic-based handover necessity estimation and target selection scheme is proposed for general heterogeneous networks. The simulation results prove that PLR, number of handovers executed and throughput performances of the proposed scheme are superior than the conventional and fuzzy-based multi-attribute decision-making (MADM) schemes. Even though this scheme is demonstrated for D2D application, it can be extended for any heterogeneous network scenarios.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3