Eliminating Rogue Femtocells for IoT Open Meter System Based on Expert System

Author:

Xiao Yong1,Qian Bin1,Cai Ziwen1ORCID,Hong Liang2,Su Sheng2ORCID

Affiliation:

1. Electric Power Research Institute of China Southern Power Grid, Guangzhou 510080, China

2. College of Electrical & Information Engineering, Changsha University of Science and Technology, Changsha 410004, China

Abstract

The Internet of things (IoT), including power meters, water meters, natural gas meters, and meter collectors in an open metering system (OMS), which is dispersed around the user side, relies on wireless virtual private networks (VPNs) to communicate with head end, and thus it is exposed to malicious cyber attacks. The General Packet Radio Service (GPRS), which is vulnerable to rogue femtocells, is widely used for communication among meter collectors and the head end. Because telecommunication fraud related to rogue femtocells is a serious offence, rogue femtocells will be turned on for some time and immediately turned off and moved from here to there to escape from being caught. The signal strength (SS) of rogue femtocells is characterized by abrupt changes. Because meter collectors and lawful femtocells are deployed at the fixed location, there is a notable difference between signal strength profile of lawful and rogue femtocells. Prior knowledge of variation of signal strength is utilized to formulate rules to detect rogue femtocells. An expert system is developed to detect rogue femtocells and prevent meter collectors from attaching to them. Numerical simulation indicates that the proposed approach can detect both stationary and moving rogue femtocells online. Since computation load of the proposed approach is not high, it can be implemented in existing IoT meter collectors with limited computation resource and the proposed approach can harden cyber security of OMS.

Funder

Electric Power Research Institute of China Southern Power Grid

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Hardware and Architecture,Mechanical Engineering,General Chemical Engineering,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3