A Lightweight authentication scheme for IoT against Rogue Base Station Attacks

Author:

Salim Mikail Mohammed1,Kang Jungho2,Pan Yi3,Park Jong Hyuk1

Affiliation:

1. Department of Computer Science and Engineering, Seoul National University of Science and Technology, (SeoulTech), Seoul 01811, Korea

2. Department of Information Security, Baewha Woman University, Korea

3. Department of Computing Science, Georgia State University, USA

Abstract

<abstract> <p>Internet of Things (IoT) devices supporting intelligent cloud applications such as healthcare for hospitals rely on connecting with local base stations and access points to provide rich data analysis and real-time services to users. Devices authenticate with local base stations and perform handover operations to connect with access points with higher signal strength. Attackers disguise as valid base stations and access points using publicly accessible SSID information connect with local IoT devices during the handover process and give rise to data integrity and privacy concerns. This paper proposes a lightweight authentication scheme for private blockchain-based networks for securing devices from rogue base stations during the handover process. An authentication certificate is designed for base stations and machines in local clusters using SHA256 and modulo operations for enabling quick handover operations. The keys assigned to each device and base station joining the network are hashed, and their sizes are reduced using modulo operations. Furthermore, the compressed key size forms a certificate, which is used by the machines and the base stations to authenticate mutually. In comparison with existing studies, the performance analysis of the proposed scheme is based on the transmission of three messages required for completing the authentication process. Evaluation based on the Communication Overhead demonstrates a minimum improvement of 99.30% fewer bytes exchanged during the handover process and 89.58% reduced Storage Overhead compared with existing studies.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3