Grouting Defect Detection of Lapped Bar Connections Based on Impact-Echo Method

Author:

Liu Yun-Lin1,Shi Jing-Jing1,Huang Jun-Qi23ORCID,Wei Guang-Shuo4,Wu Zhi-Xin4

Affiliation:

1. School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China

2. School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei 230009, China

3. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China

4. Anhui Institute of Building Research and Design, Hefei 230088, China

Abstract

Grouted lap-splice connections are widely used for connecting precast concrete components. Grouting defects in the connections significantly influence the structural performance of the whole connection, which leads to the need for grouting defect detection. In this study, the impact-echo (IE) method was used for detecting defects in grouted lap-splice connections. Grouted connections with different levels of artificial grout defects were prepared in a shear wall, and the IE method was used to measure the frequency response. In addition, finite element (FE) analysis based on ABAQUS was conducted to simulate the tests. Based on the validated FE model, a parametric study was conducted to investigate the effect of the depth of the grout hole on the amplitude spectrum. The results indicated that (1) the IE method offered a good potential for grouting defect detection in grouted lap-splice connections; (2) the proposed FE model could well predict the frequency response of the grouting hole; and (3) the measured frequency and amplitude of the grouting hole in an impact-echo test would be considerably influenced by the hole depth.

Funder

National Key Research and Development

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3