Comparison between Supervised and Unsupervised Learning for Autonomous Delamination Detection Using Impact Echo

Author:

Jafari Faezeh,Dorafshan SattarORCID

Abstract

Impact echo (IE) is a non-destructive evaluation method commonly used to detect subsurface delamination in reinforced concrete bridge decks. Existing analysis methods are based on frequency domain which can lead to inaccurate assessments of reinforced concrete bridge decks since they do not consider features of the IE signals in the time domain. The authors propose a new method for IE classification by combining features in the time and the frequency domains. The features used in this study included normalized peak values, energy, power, time of peaks, and signal lengths that were extracted from IE signals after they are preprocessed. We used a dataset containing IE data collected from four in-service bridges, annotated using chain dragging. A support vector machine (SVM) classifier was constructed using combined features to classify IE signals. A 1DCNN with unfiltered IE signals and a two-dimensional CNN using wavelet scalograms (2D representations of unfiltered IE signals) were also used to classify IE signals. The SVM model performed significantly better than the other models, with an accuracy rate, true positive rate, and true negative rate of 97%, 92%, and 98%, respectively. The SVM model also generated more accurate defect maps for all investigated bridges. IE data from the Federal Highway Administration’s InfoBridge website were used to investigate the efficacy of the developed models. The investigation yielded promising results for the proposed SVM model when used for a new set of IE data.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference41 articles.

1. 1D-CNNs for Autonomous Defect Detection in Bridge Decks Using Ground Penetrating Radar;Ahmadvand;Health Monit. Struct. Biol. Syst. XV,2021

2. Deep Learning Models for Bridge Deck Evaluation Using Impact Echo;Dorafshan;Constr. Build. Mater.,2020

3. Evaluation of Bridge Decks With Overlays Using Impact Echo: A Deep Learning Approach;Dorafshan;Autom. Constr.,2020

4. (2017, October 01). Available online: https://infobridge.fhwa.dot.gov/Data/BridgeDetail/23749045.

5. Johnson, B.V. (2013). Long-Term Bridge Performance Committee Letter Report, Long-Term Bridge Performance Committee Letter Report: February 19, National Academies Press.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3