Aero Engine Fault Diagnosis Using an Optimized Extreme Learning Machine
Author:
Affiliation:
1. Department of Aerocraft Engineering, Naval Aeronautical and Astronautical University, Yantai 264001, China
2. College of Information and Electrical Engineering, Ludong University, Yantai 264025, China
Abstract
Publisher
Hindawi Limited
Subject
Aerospace Engineering
Link
http://downloads.hindawi.com/journals/ijae/2016/7892875.pdf
Reference13 articles.
1. A Novel Gas Turbine Engine Health Status Estimation Method Using Quantum-Behaved Particle Swarm Optimization
2. Fault detection and isolation of a dual spool gas turbine engine using dynamic neural networks and multiple model approach
3. The Use of Kalman Filter and Neural Network Methodologies in Gas Turbine Performance Diagnostics: A Comparative Study
4. Defect diagnostics of SUAV gas turbine engine using hybrid SVM-artificial neural network method
5. A study on separate learning algorithm using support vector machine for defect diagnostics of gas turbine engine
Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A review on the progress, challenges and prospects in the modeling, simulation, control and diagnosis of thermodynamic systems;Advanced Engineering Informatics;2024-04
2. Overview of ionosphere clutter suppression for high frequency surface wave radar (HFSWR) system: Observation, approaches, challenges and open issue;IET Radar, Sonar & Navigation;2023-09-27
3. Flexible rotor unbalance fault location method based on transfer learning from simulation to experiment data;Measurement Science and Technology;2023-09-26
4. Intelligent fault diagnosis methods toward gas turbine: A review;Chinese Journal of Aeronautics;2023-09
5. A novel inter-domain attention-based adversarial network for aero-engine partial unsupervised cross-domain fault diagnosis;Engineering Applications of Artificial Intelligence;2023-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3