A novel inter-domain attention-based adversarial network for aero-engine partial unsupervised cross-domain fault diagnosis
Author:
Publisher
Elsevier BV
Subject
Electrical and Electronic Engineering,Artificial Intelligence,Control and Systems Engineering
Reference47 articles.
1. Comparison of adaptive filters for gas turbine performance monitoring;Borguet;J. Comput. Appl. Math.,2010
2. Cao, Z., Long, M., Wang, J., et al., 2018a. Partial transfer learning with selective adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2724–2732.
3. Cao, Z., Ma, L., Long, M., et al., 2018b. Partial adversarial domain adaptation. In: Proceedings of the European Conference on Computer Vision. ECCV, pp. 135–150.
4. Cao, Z., You, K., Long, M., et al., 2019. Learning to transfer examples for partial domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 2985–2994.
5. Wasserstein distance based deep adversarial transfer learning for intelligent fault diagnosis with unlabeled or insufficient labeled data;Cheng;Neurocomputing,2020
Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deep subdomain adversarial network with self-supervised learning for aero-engine high speed bearing fault diagnosis with unknown working conditions;Measurement;2025-02
2. Multi-objective optimal deep deconvolution and its application to early fault signal enhancement of rotating machineries;Mechanical Systems and Signal Processing;2024-12
3. Cross-modal zero-sample diagnosis framework utilizing non-contact sensing data fusion;Information Fusion;2024-10
4. A multi-domain adversarial transfer network for cross domain fault diagnosis under imbalanced data;Engineering Applications of Artificial Intelligence;2024-10
5. ISEANet: An interpretable subdomain enhanced adaptive network for unsupervised cross-domain fault diagnosis of rolling bearing;Advanced Engineering Informatics;2024-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3