Author:
Li Guofa,Liu Shaoyang,He Jialong,Wang Liang,Wu Chenchen,Qian Chenhui
Reference37 articles.
1. Wasserstein gan. arXiv Preprint arXiv:1701.07875;Arjovsky,2017
2. A deep learning approach for fault detection and RUL estimation in bearings;Bono,2022
3. Highly imbalanced fault classification of wind turbines using data resampling and hybrid ensemble method approach;Chatterjee;Eng. Appl. Artif. Intell.,2023
4. SMOTE: synthetic minority over-sampling technique;Chawla;J. Artif. Intell. Res.,2002
5. Deep transfer learning for bearing fault diagnosis: A systematic review since 2016;Chen;IEEE Trans. Instrum. Meas.,2023