Low-Cost Rotating Experimentation in Compressor Aerodynamics Using Rapid Prototyping

Author:

Michaud Mathias1,Milan Petro Jr.1,Vo Huu Duc1

Affiliation:

1. Department of Mechanical Engineering, École Polytechnique de Montréal, Campus UdeM, 2900 Boulevard Édouard-Montpetit, 2500 Chemin de Polytechnique, Office C318.9, Montréal, QC, H3T 1J4, Canada

Abstract

With the rapid evolution of additive manufacturing, 3D printed parts are no longer limited to display purposes but can also be used in structural applications. The objective of this paper is to show that 3D prototyping can be used to produce low-cost rotating turbomachinery rigs capable of carrying out detailed flow measurements that can be used, among other things, for computational fluid dynamics (CFD) code validation. A fully instrumented polymer two-stage axial-mixed flow compressor test rig was designed and fabricated with stereolithography (SLA) technology by a team of undergraduate students as part of a senior-year design course. Experiments were subsequently performed on this rig to obtain both the overall pressure rise characteristics of the compressor and the stagnation pressure distributions downstream of the blade rows for comparison with CFD simulations. In doing so, this work provides a first-of-a-kind assessment of the use of polymer additive technology for low-cost rotating turbomachinery experimentation with detailed measurements.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Hindawi Limited

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mathematical Simulating of the Flow in the Fan Impeller with Meridional Acceleration;Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering;2022-12

2. Design and Development of a Single-Stage Axial Compressor Testbench;2022 Intermountain Engineering, Technology and Computing (IETC);2022-05

3. Numerical and experimental investigations of a turbocharger with a compressor wheel made of additively manufactured plastic;International Journal of Mechanical Sciences;2020-07

4. Design and Manufacturing of Micro-Turbomachinery Components with Application of Heat Resistant Plastics;Mechanics and Mechanical Engineering;2018-06-01

5. Test Stand for the Experimental Investigation of Turbochargers with 3D Printed Components;Mechanics and Mechanical Engineering;2018-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3