Optimization of the Distribution and Localization of Wireless Sensor Networks Based on Differential Evolution Approach

Author:

Céspedes-Mota Armando1ORCID,Castañón Gerardo1,Martínez-Herrera Alberto F.1ORCID,Cárdenas-Barrón Leopoldo Eduardo2ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Tecnológico de Monterrey, Eugenio Garza Sada No. 2501 Sur, Monterrey, NL, Mexico

2. School of Engineering and Sciences, Tecnológico de Monterrey, Eugenio Garza Sada No. 2501 Sur, Monterrey, NL, Mexico

Abstract

Location information for wireless sensor nodes is needed in most of the routing protocols for distributed sensor networks to determine the distance between two particular nodes in order to estimate the energy consumption. Differential evolution obtains a suboptimal solution based on three features included in the objective function: area, energy, and redundancy. The use of obstacles is considered to check how these barriers affect the behavior of the whole solution. The obstacles are considered like new restrictions aside of the typical restrictions of area boundaries and the overlap minimization. At each generation, the best element is tested to check whether the node distribution is able to create a minimum spanning tree and then to arrange the nodes using the smallest distance from the initial position to the suboptimal end position based on the Hungarian algorithm. This work presents results for different scenarios delimited by walls and testing whether it is possible to obtain a suboptimal solution with inner obstacles. Also, a case with an area delimited by a star shape is presented showing that the algorithm is able to fill the whole area, even if such area is delimited for the peaks of the star.

Funder

School of Engineering and Sciences of Tecnológico de Monterrey

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3