Microstructure and Mechanical Characteristics of Stir-Casted AA6351 Alloy and Reinforced with Nanosilicon Carbide Particles

Author:

Thirugnanam S.1,Ananth G.1,Muthu Krishnan T.1,Tariku Olkeba Tewedaj2ORCID

Affiliation:

1. Department of Mechanical Engineering, SRM Valliammai Engineering College, Chennai, Tamil Nadu, India

2. Department of Mechanical Engineering, Ambo University, Ambo, Ethiopia

Abstract

The main aim of this research is to analyze the mechanical performances of the influence of silicon carbide (SiC) particles with AA6351 aluminum alloy. The aluminum metal matrix composites were prepared with liquefying stir casting to produce the metal matrix composites (MMCs). The following weight fractions are AA6351-0% SiC, AA6351-2.5% SiC, AA6351-5% SiC, and AA6351-7.5% SiC utilized to compose the MMCs. The mechanical performances like hardness, flexural, impact, compressive, and tensile studies were investigated on the processed MMCs. The scanning electron microscope (SEM) was employed to examine the strengthened particle of SiC. During the SEM examinations, uniformly dispersed SiC-strengthened particles were analyzed. The entire MMCs specimens achieve greater mechanical characteristics; the specimen fabricated with a maximum volume fraction of 7.5 wt% of SiC accumulates higher strength than the other volume fractions samples. The SiC plays a very tedious role in improving mechanical attributes. The fabricated MMCs were highly utilized in the applications of automotive and aerospace usages. This application is fully employed with lesser weight and maximum strength conditions to fulfill the mechanical performances. The stir-casting process was a highly efficient technique to compose better MMCs to achieve greater strength.

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3