Processing and Characterization of Carbon Nanofibre Composites for Automotive Applications

Author:

Natrayan L.1ORCID,Merneedi Anjibabu2ORCID,Bharathiraja G.1,Kaliappan S.3ORCID,Veeman Dhinakaran4ORCID,Murugan P.5ORCID

Affiliation:

1. Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu 602105, India

2. Department of Mechanical Engineering, Aditya College of Engineering, Surampalem, 533437 Andhra Pradesh, India

3. Department of Mechanical Engineering, Velammal Institute of Technology, Chennai, 601204 Tamil Nadu, India

4. Centre for Additive Manufacturing, Chennai Institute of Technology, Chennai 600069, India

5. Faculty of Mechanical Engineering, Jimma Institute of Technology, Jimma University, Jimma, Ethiopia

Abstract

Currently, numerous studies have shown that carbon nanofibres have mechanical properties that are replaced by other widely used fibres. The high tensile strength of the carbon fibres makes them ideal to use in polymer matrix composites. The high-strength fibres can be used in short form in a composite and mass-produced to meet the high demands of automotive applications. These composites are capable of addressing the strength requirement of nonstructural and structural components of the automotive industry. Due to these composite lightweight and high-strength weight ratios, the applications can be widely varying. The research for these materials is a never-ending process, as researchers and design engineers are yet to tap its full potential. This study fabricated phenolic resin with different wt% of carbon nanofibre (CNF). The percentage of the CNF as a filler material is varied from 1 to 4 wt%. Mechanical properties such as hardness, tensile strength, and XRD were investigated. Phenolic resin with 4 wt% of carbon nanofibre (CNF) exhibits maximum tensile strength and hardness of 43.8 MPa and 37.8 HV.

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3