Handling Imbalance Classification Virtual Screening Big Data Using Machine Learning Algorithms

Author:

Hussin Sahar K.1ORCID,Abdelmageid Salah M.2,Alkhalil Adel3,Omar Yasser M.4,Marie Mahmoud I.5,Ramadan Rabie A.36ORCID

Affiliation:

1. Communication and Computers Engineering Department Alshrouck Academy, Cairo, Egypt

2. Computer Engineering Department, Collage of Comp. Science and Engineering, Taibah University, Medina, Saudi Arabia

3. College of Computer Science and Engineering, University of Hai’l, Hai’l, Saudi Arabia

4. Arab Academy for Science Technology and Maritime Transport, Cairo, Egypt

5. Computer and System Engineering Department, Al-Azhar University, Cairo, Egypt

6. Computer Engineering Department, Cairo Universality, Cairo, Egypt

Abstract

Virtual screening is the most critical process in drug discovery, and it relies on machine learning to facilitate the screening process. It enables the discovery of molecules that bind to a specific protein to form a drug. Despite its benefits, virtual screening generates enormous data and suffers from drawbacks such as high dimensions and imbalance. This paper tackles data imbalance and aims to improve virtual screening accuracy, especially for a minority dataset. For a dataset identified without considering the data’s imbalanced nature, most classification methods tend to have high predictive accuracy for the majority category. However, the accuracy was significantly poor for the minority category. The paper proposes a K-mean algorithm coupled with Synthetic Minority Oversampling Technique (SMOTE) to overcome the problem of imbalanced datasets. The proposed algorithm is named as KSMOTE. Using KSMOTE, minority data can be identified at high accuracy and can be detected at high precision. A large set of experiments were implemented on Apache Spark using numeric PaDEL and fingerprint descriptors. The proposed solution was compared to both no-sampling method and SMOTE on the same datasets. Experimental results showed that the proposed solution outperformed other methods.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3