PyComp: A Versatile Tool for Efficient Data Extraction, Conversion, and Management in High-throughput Virtual Drug Screening

Author:

Sisakht Mohsen1,Shahrestanaki Mohammad Keyvanloo2,Fallahi Jafar1ORCID,Razban Vahid1

Affiliation:

1. Molecular Medicine Department, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran

2. Department of Nutrition and Biochemistry, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran

Abstract

Background: Virtual screening (VS) is essential for analyzing potential drug candidates in drug discovery. Often, this involves the conversion of large volumes of compound data into specific formats suitable for computational analysis. Managing and processing this wealth of information, especially when dealing with vast numbers of compounds in various forms, such as names, identifiers, or SMILES strings, can present significant logistical and technical challenges. Methods: To streamline this process, we developed PyComp, a software tool using Python's PyQt5 library, and compiled it into an executable with Pyinstaller. PyComp provides a systematic way for users to retrieve and convert a list of compound names, IDs (even in a range), or SMILES strings into the desired 3D format. Results: PyComp greatly enhances the efficiency of data extraction, conversion, and storage processes involved in VS. It searches for similar compounds coupled with its ability to handle misidentified compounds and offers users an easy-to-use, customizable tool for managing largescale compound data. By streamlining these operations, PyComp allows researchers to save significant time and effort, thus accelerating the pace of drug discovery research. Conclusion: PyComp effectively addresses some of the most pressing challenges in highthroughput VS: efficient management and conversion of large volumes of compound data. As a user-friendly, customizable software tool, PyComp is pivotal in improving the efficiency and success of large-scale drug screening efforts, paving the way for faster discovery of potential therapeutic compounds.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3