A Comparative Study of Compact Multiband Bio-Inspired Asymmetric Microstrip Fed Antennas (BioAs-MPAs) for Wireless Applications

Author:

Abolade Jeremiah O.1ORCID,Konditi Dominic B. O.2,Dharmadhikary Vasant M.3

Affiliation:

1. Department of Electrical Engineering, Pan African University, Institute for Basic Sciences, Technology and Innovation, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya

2. School of Electrical and Electronic Engineering, The Technical University of Kenya, Nairobi, Kenya

3. Department of Electrical and Electronic Engineering, Dedan Kimathi University of Technology, Nyeri, Kenya

Abstract

A comparative analysis of compact multiband bio-inspired Asymmetric microstrip fed antennas (BioAs-MPAs) is presented in this paper for the first time. The proposed antennas are based on semi-Carica papaya-leaf shaped, semi-Monstera deliciosa-leaf shaped, semi-Vitis vinifera shaped, Defected Ground Structure (DGS) and L-slit techniques. The antennas are built on a 33 × 15 mm2 Rogers duroid 5880 substrate. The modelling equations for resonant frequencies of the proposed arbitrarily shaped radiating patch is based on modified circular patch modelling equations. The semi-Carica papaya-leaf antenna operates at 2.4 GHz and 4.4 GHz, Monstera deliciosa-leaf antenna operates at 2.6 GHz, 4.4 GHz and 5.5 GHz, while Vine-leaf antenna operates at 2.5 GHz and 5.4 GHz. The proposed BioAs-MPAs antennas radiation patterns at E-plane are Bi-directional in all the operating frequencies with suitable X-Pol purity and have Omnidirectional radiation patterns at H-Plane in all the operating frequencies. As a result of the analysis, it was found that each of the bio-inspired structures has its unique merit over the others. Owing to the small size, stable radiation pattern, acceptable gain and high radiation efficiency, the proposed BioAs-MPAs antennas are suitable for ISM band, Bluetooth, Wi-Fi, WiMAX, LTE, UMTS, Sub6 GHz 5 G band, ZigBee and RF-Altimeter used in unmanned aerial vehicle and Aviation industry.

Funder

Pan African University Institute of Basic Sciences, Technology, and Innovation

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Hardware and Architecture,Mechanical Engineering,General Chemical Engineering,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3