Ram Horn-Shaped Inspired Folded Compact Antenna for 4G LTE-A and WLAN Portable Mobile Applications

Author:

Abolade Jeremiah O.1ORCID,Konditi Dominic B. O.2

Affiliation:

1. Department of Electrical Engineering, Pan African University, Institute for Basic Sciences, Technology and Innovation, Nairobi, Kenya

2. School of Electrical and Electronic Engineering, The Technical University of Kenya, Nairobi, Kenya

Abstract

A compact dual-band ram horn-like folded antenna is presented in this work. The antenna is based on a ram horn-like folded strip, asymmetric microstrip feeding (AMF) technique, partial ground, and protruding stub at the ground plane. The dimension of the proposed antenna is 0.11 λ g  × 0.17 λ g at 2.3 GHz (10 × 15 mm2). The proposed shape is achieved through the combination of two circular arcs with different radii. The antenna operates at 2.3 GHz and 5.8 GHz with a measured bandwidth of 100 MHz and 820 MHz, a gain of 0.62 dBi and 2.2 dBi, and radiation efficiency of 93.67% and 99.87%, respectively. The prototype of the proposed antenna is fabricated and measured. The measured result shows a good agreement with the simulated result. The parametric study of the proposed antenna is performed and results are presented. Besides, a comparative study between the antennas proposed in this work and the state of the art is performed and presented. The proposed antenna is comparatively small in size than all the recently reported works in the literature while ensuring good radiation characteristics. Therefore, the antenna proposed in this work is a better candidate for future portable sub-6GHz fifth-generation (5G), Advance Long-term Evolution (LTE-A), Worldwide Interoperability for Microwave Access (WiMAX), and Wireless Local Area Network (WLAN) applications.

Funder

African Union

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Miniaturized Dual-Band Antenna for GSM1800, WLAN, and Sub-6 GHz 5G Portable Mobile Devices;Journal of Electrical and Computer Engineering;2022-09-12

2. Ultra-Compact Slitted Flower-Shaped Dual-Band Monopole Antenna for Modern Portable Devices;International Journal of Antennas and Propagation;2022-07-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3