Adaptive Fixed-Time Trajectory Tracking Control for Underactuated Hovercraft with Prescribed Performance in the Presence of Model Uncertainties

Author:

Fu Mingyu1,Zhang Tan1ORCID,Ding Fuguang1,Wang Duansong1

Affiliation:

1. College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China

Abstract

This paper develops an adaptive fixed-time trajectory tracking controller of an underactuated hovercraft with a prescribed performance in the presence of model uncertainties and unknown time-varying environment disturbances. It is the first time that the proposed method is applied to the motion control of the hovercraft. To begin with, based on the hovercraft's four degrees of freedom (DOF) model, the virtual control laws are designed using an error transforming function and the fixed-time stability theory to guarantee that the position tracking errors are constrained within the prescribed convergence rates and minimum overshoot. In addition, by combining the Lyapunov direct method and the adaptive radial basis function neural network (ARBFNN), the actual control laws are designed to ensure that the velocity tracking errors converge to a small region containing zero while handling model uncertainties and external disturbances effectively. Finally, all tracking errors of the closed-loop system are uniformly ultimately bounded and fixed-time convergent. Results from a comparative simulation study verify the effectiveness and advantage of the proposed method.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3