Affiliation:
1. School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
Abstract
User location prediction in location-based social networks can predict the density of people flow well in terms of intelligent transportation, which can make corresponding adjustments in time to make traffic smooth, reduce fuel consumption, reduce greenhouse gas emissions, and help build a green cycle low-carbon transportation green system. This paper proposes a Markov chain position prediction model based on multidimensional correction (MDC-MCM). Firstly, extract corresponding information from the user’s historical check-in position sequence as a position-position conversion map. Secondly, the influence of check-in period, space distance, and other factors on the position prediction is linearly weighted and merged with the position prediction of the n-order Markov chain to construct MDC-MCM. Finally, we conduct a comprehensive performance evaluation of MDC-MCM using the dataset collected from Brightkite. Experimental results show that compared with other advanced location prediction technologies, MDC-MCM achieves better location prediction results.
Funder
Fundamental Research Funds for the Central Universities
Subject
Multidisciplinary,General Computer Science
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献