A Lightweight Approach for Building User Mobility Profiles

Author:

Vallejos Sebastián12,Berdun Luis12ORCID,Armentano Marcelo12ORCID,Schiaffino Silvia12ORCID,Godoy Daniela12ORCID

Affiliation:

1. Facultad de Ciencias Exactas, Instituto Superior de Ingeniería de Software (ISISTAN), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Tandil 7000, Buenos Aires, Argentina

2. Instituto Superior de Ingeniería de Software (ISISTAN), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Tandil 7000, Buenos Aires, Argentina

Abstract

Data captured by mobile devices enable us, among other things, learn the places where users go, identify their home and workplace, the places they usually visit (e.g., supermarket, gym, etc.), the different paths they take to move from one place to another and even their routines. In summary, with this information, it is possible to learn a user mobility profile. In this work, we propose a lightweight approach for building mobility profiles from data collected with mobile devices. The mobility profiles of a user consist of the places visited, the visit history and the travel paths. Our approach aims to solve some of the challenges and limitations identified in the literature. Particularly, it considers geographic information to identify certain kinds of places, such as open spaces, big places and small places, that are hard to distinguish with existing approaches. We use different sensors and time frequencies to collect data in order to optimize battery consumption and maximize precision. Finally, it executes entirely on the mobile devices, avoiding the exposure of sensitive user information and then preserving user privacy. The proposal was evaluated in the context of the real usage of the developed prototype applications in two cities of Argentina. The results obtained with our approach outperformed other approaches in the literature, both in precision and recall.

Funder

Ayacucho Municipality

ANPCyT

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference53 articles.

1. Deloitte (2020, April 23). Consumo Móvil en Argentina. Available online: https://www2.deloitte.com/ar/es/pages/technology-media-and-telecommunications/articles/consumo-movil-en-argentina.html.

2. Mining GPS data for mobility patterns: A survey;Lin;Pervasive Mob. Comput.,2014

3. Constructing and Comparing User Mobility Profiles;Chen;ACM Trans. Web,2014

4. Ye, Y., Zheng, Y., Chen, Y., Feng, J., and Xie, X. (2009, January 18–20). Mining Individual Life Pattern Based on Location History. Proceedings of the 10th International Conference on Mobile Data Management: Systems, Services and Middleware, Taipei, Taiwan.

5. Followee recommendation based on text analysis of micro-blogging activity;Armentano;Inf. Syst.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3