Experimental and Numerical Investigation into Formation of Metro Wheel Polygonalization

Author:

Cai Wubin1ORCID,Chi Maoru1ORCID,Tao Gongquan1,Wu Xingwen2ORCID,Wen Zefeng1ORCID

Affiliation:

1. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 611031, China

2. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 611031, China

Abstract

We present a detailed investigation of the mechanism of metro wheel polygonal wear using on-site experiments and numerical simulation. More than 70% of metro wheels exhibit 6th–8th harmonic-order polygonal wear; the excitation frequency of the polygonal wear is located in the 50–70 Hz interval at an operating speed of 65–75 km/h. To determine the root cause of the polygonal wear, a dynamic train behavior test is conducted immediately after wheel reprofiling. The results suggest a natural mode resonance in the vehicle/track system, whose frequency coincides with the passing frequency of the 6th–8th order polygonalization. The magnitude of the resonance increases significantly when the vehicle runs on a monolithic concrete bed with DTVI2 fasteners. Thus, a corresponding coupled vehicle/track dynamic model is established and validated by comparing the calculated frequency response functions (FRFs) of tracks and dynamic responses of axlebox acceleration with the measured values. Using multiple timescales, the dynamic model and Archard wear model are integrated in a closed loop for long-term polygonal wear prediction. The simulated and measured evolution of polygonal wear show good agreement. By combining simulation results and experimental data, we suggest that the P2 resonance is the main contributor to the high amplitude of wheel/rail contact forces in the 50–70 Hz frequency range and the reason for subsequent polygonal wear. Parametric studies show that the dominant order decreases as vehicle speeds increase, representing a “frequency-constant” mechanism. The wheelset flexibility, especially the bending mode, would aggravate the wheel/rail creepage and further accelerate the formation of polygonal wear. Higher rail pad stiffness will increase P2 resonance frequency and shift the dominant wheel to higher polygonal orders.

Funder

National Natural Science Foundation of High Speed Rail Joint Funds of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3