Clustering-Based Classification of Polygonal Wheels in a Railway Freight Vehicle Using a Wayside System

Author:

Guedes António1ORCID,Silva Rúben2ORCID,Ribeiro Diogo1ORCID,Magalhães Jorge1,Jorge Tomás1,Vale Cecília2ORCID,Meixedo Andreia2ORCID,Mosleh Araliya2ORCID,Montenegro Pedro2ORCID

Affiliation:

1. CONSTRUCT-LESE, School of Engineering, Polytechnic of Porto, 4200-465 Porto, Portugal

2. CONSTRUCT-LESE, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal

Abstract

Polygonal wheels are one of the most common defects in train wheels, causing a reduction in comfort levels for passengers and a higher degradation of vehicle and track components. With the aim of contributing to the safety and reliability of railway transport, this paper presents the development of an innovative methodology for classifying polygonal wheels based on a wayside system. To achieve that, a numerical train-track interaction model was adopted to simulate the passage of a freight train over a virtual wayside monitoring system composed of a set of accelerometers installed on the rails. Then, the acquired acceleration time series was transformed to a frequency domain using a Fast Fourier transform (FFT), and on this data, damage-sensitive features were extracted. The features based on Principal Component Analysis (PCA) showed great sensitivity to the harmonic order, while the ones based on Continuous Wavelet Transform (CWT) model showed great sensitivity to the defect amplitude. One step further, all features are merged using the Mahalanobis distance in order to obtain a damage index strongly correlated with the polygonal defect. Finally, a cluster analysis allowed the automatic classification of polygonal wheels, according to the harmonic order (harmonic-based) and defect amplitude (amplitude-based). The proposed methodology demonstrated high efficiency in identifying different types of polygonal wheels using a minimum layout of two sensors.

Funder

North Portugal Regional Operational Programme (NORTE2020) and FCT/MCTES

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3