Tracing Geographical Origins of Teas Based on FT-NIR Spectroscopy: Introduction of Model Updating and Imbalanced Data Handling Approaches

Author:

Hong Xue-Zhen12,Fu Xian-Shu3,Wang Zheng-Liang3,Zhang Li4,Yu Xiao-Ping3,Ye Zi-Hong3ORCID

Affiliation:

1. College of Quality & Safety Engineering, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, China

2. BioCircuits Institute, University of California, La Jolla, San Diego, CA 92093, USA

3. Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, China

4. Department of Computer Science, Zhejiang University, Hangzhou 310027, China

Abstract

This work presents a reliable approach to trace teas’ geographical origins despite changes in teas caused by different harvest years. A total of 1447 tea samples collected from various areas in 2014 (660 samples) and 2015 (787 samples) were detected by FT-NIR. Seven classifiers trained on the 2014 dataset all succeeded to trace origins of samples collected in 2014; however, they all failed to predict origins for the 2015 samples due to different data distributions and imbalanced dataset. Three outlier detection based undersampling approaches—one-class SVM (OC-SVM), isolation forest and elliptic envelope—were then proposed; as a result, the highest macro average recall (MAR) for the 2015 dataset was improved from 56.86% to 73.95% (by SVM). A model updating approach was also applied, and the prediction MAR was significantly improved with increase in the updating rate. The best MAR (90.31%) was first achieved by the OC-SVM combined SVM classifier at a 50% rate.

Funder

Key Research and Development Program of Zhejiang Province

Publisher

Hindawi Limited

Subject

Computer Science Applications,Instrumentation,General Chemical Engineering,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3