Author:
Huang Lingxia,Liu Hongru,Zhang Bo,Wu Di
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Process Chemistry and Technology,Safety, Risk, Reliability and Quality,Food Science
Reference39 articles.
1. Abe, S. (2007). Sparse least squares support vector training in the reduced empirical feature space. Pattern Analysis and Applications, 10(3), 203–214.
2. Allwein, E. L., Schapire, R. E., & Singer, Y. (2001). Reducing multiclass to binary: a unifying approach for margin classifiers. Journal of Machine Learning Research, 1, 113–141.
3. Ampuero, S., & Bosset, J. (2003). The electronic nose applied to dairy products: a review. Sensors and Actuators, B: Chemical, 94(1), 1–12.
4. Ampuero, S., Bogdanov, S., & Bosset, J.-O. (2004). Classification of unifloral honeys with an MS-based electronic nose using different sampling modes: SHS, SPME and INDEX. European Food Research and Technology, 218(2), 198–207.
5. Araujo, M. C. U., Saldanha, T. C. B., Galvao, R. K. H., Yoneyama, T., Chame, H. C., & Visani, V. (2001). The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemometrics and Intelligent Laboratory Systems, 57(2), 65–73.
Cited by
75 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献