Bayesian Analysis of Record Statistic from the Inverse Weibull Distribution under Balanced Loss Function

Author:

Al-Duais Fuad S.1ORCID

Affiliation:

1. Mathematics Department, College of Humanities and Science in Al-Aflaj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia

Abstract

The main contribution of this work is to develop a linear exponential loss function (LINEX) to estimate the scale parameter and reliability function of the inverse Weibull distribution (IWD) based on lower record values. We do this by merging a weight into LINEX to produce a new loss function called weighted linear exponential loss function (WLINEX). We then use WLINEX to derive the scale parameter and reliability function of the IWD. Subsequently, we discuss the balanced loss functions for three different types of loss function, which include squared error (SE), LINEX, and WLINEX. The majority of previous scholars determined the weighted balanced coefficients without mathematical justification. One of the main contributions of this work is to utilize nonlinear programming to obtain the optimal values of the weighted coefficients for balanced squared error (BSE), balanced linear exponential (BLINEX), and balanced weighted linear exponential (BWLINEX) loss functions. Furthermore, to examine the performance of the proposed methods—WLINEX and BWLINEX—we conduct a Monte Carlo simulation. The comparison is between the proposed methods and other methods including maximum likelihood estimation, SE loss function, LINEX, BSE, and BLINEX. The results of simulation show that the proposed models BWLINEX and WLINEX in this work have the best performance in estimating scale parameter and reliability, respectively, according to the smallest values of mean SE. This result means that the proposed approach is promising and can be applied in a real environment.

Funder

Prince Sattam bin Abdulaziz University

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3