Bayesian Estimations of Shannon Entropy and Rényi Entropy of Inverse Weibull Distribution

Author:

Ren Haiping1,Hu Xue2

Affiliation:

1. Department of Basic Subjects, Jiangxi University of Science and Technology, Nanchang 330013, China

2. College of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China

Abstract

In this paper, under the symmetric entropy and the scale squared error loss functions, we consider the maximum likelihood (ML) estimation and Bayesian estimation of the Shannon entropy and Rényi entropy of the two-parameter inverse Weibull distribution. In the ML estimation, the dichotomy is used to solve the likelihood equation. In addition, the approximation confidence interval is given by the Delta method. Because the form of estimation results is more complex in the Bayesian estimation, the Lindley approximation method is used to achieve the numerical calculation. Finally, Monte Carlo simulations and a real dataset are used to illustrate the results derived. By comparing the mean square error between the estimated value and the real value, it can be found that the performance of ML estimation of Shannon entropy is better than that of Bayesian estimation, and there is no significant difference between the performance of ML estimation of Rényi entropy and that of Bayesian estimation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference48 articles.

1. A mathematical theory of communication;Shannon;Bell Syst. Tech. J.,1948

2. On measures of entropy and information;Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics,1970

3. Statistical Estimation of the Shannon Entropy;Bulinski;Acta Math. Sin. Engl. Ser.,2018

4. Information and entropies;Wolf;Quantum Key Distrib. Introd. Exerc.,2021

5. Estimation of entropy for generalized exponential distribution based on record values;Chacko;J. Indian Soc. Prob. St.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3