Multiobjective Optimization of Sustainable WCO for Biodiesel Supply Chain Network Design

Author:

Geng Nana1ORCID,Sun Yixiang2ORCID

Affiliation:

1. Nanjing University of Posts and Telecommunications, Nanjing 210023, China

2. Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

Abstract

Bioenergy is attracting more attention worldwide due to its environmental and economic benefits. The design of a feasible biodiesel supply chain network can effectively improve the production and use of biodiesel and then further promote the development of the biodiesel industry. As an easy recyclable material with high yield, kitchen waste has a good prospect and can solve public health and safety problems. This paper takes the kitchen waste producing biodiesel as the object to design and optimize the biodiesel supply chain in order to improve the sustainable development of biodiesel industry and the operational efficiency of the biodiesel supply chain. By designing a sustainable biodiesel supply chain model under defined conditions, it proposes strategic and tactical decisions related to location, production, inventory, and distribution within multiple planning cycles. In order to effectively solve the model, a Pareto optimal NSGAII heuristic algorithm is proposed and applied to a practical case study of restaurants in Jiangsu Province. The efficiency of the method and the optimal solution are verified by a case study. The overall optimization of biodiesel supply can effectively improve the efficiency of supply chain, reduce system cost, improve the profit of biodiesel operators, and promote the sustainable development of biodiesel industry, which has important guiding significance and reference value for the practice of biodiesel supply chain network planning.

Funder

Nanjing University of Posts and Telecommunications

Publisher

Hindawi Limited

Subject

Modelling and Simulation

Reference46 articles.

1. Review on recovery and reuse of waste oil;R. Chen;Innovation and Application of Science and Technology,2017

2. Review on the development of food waste management policy in China;F. Zhou;Low-carbon Econo,2020

3. Sustainable supply chain network design: An optimization-oriented review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3