Development of a supply chain model for the production of biodiesel from waste cooking oil for sustainable development

Author:

Munir M. Adeel,Imran Shahid,Farooq M.,Latif Huma,Hussain Amjad,Rehman Ateekh Ur,Sultan M.,Ali Qasim,Krzywanski Jaroslaw

Abstract

The increasing demand for energy and the severe environmental and economic repercussions have contributed to the development of renewables options. The scarcity of fossil fuels and their negative effect on the environment have sparked an alarming situation for alternative energy sources that are cleaner and more sustainable. Waste cooking oil is a valuable feedstock for biodiesel production, but it is often disposed of improperly, causing environmental pollution and health hazards. The current waste cooking oil supply chain in Pakistan and other countries is fragmented, inefficient, and often unregulated, leading to a lack of standardization and quality control. The study aims to develop a comprehensive supply chain model that integrates waste cooking oil collection, transportation, processing, and biodiesel production to create a sustainable value chain that benefits the environment, the economy, and society as a whole. The proposed optimization approach reduces the total expenses associated with the activities of the biodiesel supply chain. Modified possibilistic chance constrained programming (MPCCP) is used as a solution technique to represent this uncertainty. The MPCCP model is solved with the assistance of Lingo 18.0, while fuzzy logic demand forecasting was done using MATLAB. Accordingly, the fuzzy logic designer (FLD) simulation was conducted to demonstrate the applicability and effectiveness of FLD simulation for the particular kind of issue being considered. The research, not only focuses on mitigating environmental and health risks associated with improper waste cooking oil disposal, resulting in reduced pollution and a cleaner environment but it also advocates for the efficient utilization of waste cooking oil as a valuable feedstock for biodiesel production, thereby promoting a more sustainable and renewable energy source. By optimizing supply chain activities and minimizing costs, the research contributes to enhancing economic growth and efficiency within the biodiesel industry. This research encourages further exploration and collaboration among researchers and stakeholders to expand the applications of the proposed model in waste management, renewable energy, and supply chain optimization.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3