Influence of Cyclic Impact Loading and Axial Stress on Dynamic Mechanical Properties of Burst-Prone Coal

Author:

Gong Shuang123ORCID,Wang Zhen123,Zhou Lei123,Wang Wen13

Affiliation:

1. School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China

2. Henan Key Laboratory for Green and Efficient Mining & Comprehensive Utilization of Mineral Resources, Jiaozuo 454000, China

3. Collaborative Innovation Center of Coal Work Safety, Jiaozuo 454000, Henan Province, China

Abstract

High in-situ stress and frequent dynamic disturbances caused by the mining process in deep coal mines can easily induce dynamic disasters such as coal burst. We conducted laboratory experiments to assess the effects of the axial stress loading and dynamic cyclic impact loading on the dynamic mechanical properties of burst-prone coals by using a modified split Hopkinson pressure bar (SHPB). Comparisons were made using two types of burst-prone and burst-resistant coal samples. The mineral components, organic macerals, and dynamic mechanical features of both burst-prone and burst-resistant coal samples were comparatively analyzed based on the obtained X-ray diffraction (XRD), optical microscope observations, and dynamic compressive stress-strain curves, respectively. The results of the microstructure analysis indicated a larger difference between the minimum and maximum reflectances of vitrinite for burst-prone coal. Compared to the burst-resistant coal samples, the burst-prone coals contained less corpocollinite and fusinite. While applying a high axial static load combined with cyclic impact load, the coal samples showed the characteristics of fatigue damage. The results also demonstrated that preaxial stress affected the burst resistance of coal samples. The greater the preaxial stress was, the less the coal samples could withstand the dynamic cyclic impact load. In comparison to the burst-resistant coal sample, the burst-prone coal sample showed a larger dynamic compressive strength and a lower deformation. They were also more positively capable of the propagation and activation of the coal burst. We believe that the results of the study are conducive to further understanding of the distribution of microcomponents of burst-prone coals. The results are also beneficial for realizing the dynamic mechanical characteristics of burst-prone coals under the impact of cyclic dynamic load.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference20 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3