Mechanical properties and failure modes of CRCB specimen under impact loading

Author:

Liu Wenjie,Yang Ke,Dou Litong,Wei Zhen,Chi Xiaolou,Xu Rijie

Abstract

AbstractTo explore the dynamic mechanical characteristics of CRCB specimens, a separated Hopkinson pressure bar (SHPB) test device combined with ultra-high-speed camera system was used to carry out the impact compression test on CRCB specimens. The stress wave propagation, dynamic stress–strain relationship, dynamic evolution of cracks, energy dissipation law and failure characteristics of the coal–rock combined body in the case of stress waves entering coal from rock were compared and analyzed. The influence of the difference between the rock and the incident bar on the propagation of stress wave gradually weakens with the increase of the impact velocity. The strength stress and peak strain of the CRCB specimens have obvious strain-rate effects. Besides, with increased impact velocity, the incident energy increases linearly, the reflected energy proportion decreases linearly and the absorbed energy proportion change approximately as a power function. Under the same stress wave, as the strength of the rock increases, the failure degree of coal gradually increases, the broken particles gradually transition from massive to powder and the rock mode changes from splitting failure to shear failure. As a result, the average particle size of broken coal blocks decreases, and the fractal dimension of CRCB specimens increases gradually. The research results provide basic research for the control of surrounding rock of roadway under dynamic pressure.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3