Fault Diagnosis of Axial Piston Pump Based on Extreme-Point Symmetric Mode Decomposition and Random Forests

Author:

Yafei Lei1ORCID,Wanlu Jiang2ORCID,Hongjie Niu3ORCID,Xiaodong Shi2ORCID,Xukang Yang2ORCID

Affiliation:

1. School of Mechanical and Electrical Engineering, North China Institute of Aerospace Engineering, Langfang 065000, China

2. College of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China

3. School of Computer and Remote Sensing Information Technology, North China Institute of Aerospace Engineering, Langfang 065000, China

Abstract

Aiming at fault diagnosis of axial piston pumps, a new fusion method based on the extreme-point symmetric mode decomposition method (ESMD) and random forests (RFs) was proposed. Firstly, the vibration signal of the axial piston pump was decomposed by ESMD to get several intrinsic mode functions (IMFs) and an adaptive global mean curve (AGMC) on the local side. Secondly, the total energy was selected as the data of feature extraction by analyzing the whole oscillation intensity of the signal. Thirdly, the data were preprocessed and the labels were set, and then, they were adopted as the training and testing set of machine learning samples. Lastly, the RFs model was created based on machine learning service (MLS) to diagnose the faults of the axial piston pump on the cloud. Using the test and verifying the data set for comparative testing, the fault diagnosis precision rates of the model are above 90.6%, the recall rates are more than 90.9%, the F1 score is higher than 90.7%, and the accuracy rate of this model reached 97.14%. A benchmark data simulation of mechanical transmission systems and an experimental data investigation of an axial piston pump are performed to manifest the superiority of the present method by comparing with classification and regression trees (CART) and support vector machine (SVM).

Funder

North China Institute of Aerospace Engineering

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3