Establishment of nonlinear network security situational awareness model based on random forest under the background of big data

Author:

He Jinkui1,Su Weibin2

Affiliation:

1. School of Intelligent Science and Engineering, Yunnan Technology and Business University , Kunming 650217 , China

2. Edge Computing and Network Center, Yunnan Technology and Business University , Kunming 650217 , China

Abstract

Abstract In order to explore the establishment of a nonlinear network security situational awareness model based on random forest in the context of big data, a multi-level network security knowledge system evaluation model based on random forest is proposed. This article proposes a multi-level CSSA analysis system and then uses random memory algorithm to create a CSSA evaluation model. Also, it proposes a CSSA multi-level analysis framework and then uses random forest algorithm to build a CSSA evaluation model. A random vector distribution of the same values is used for all forest trees. In this article, the interval [0,1] is used to quantitatively describe the weight of the security level. The training sample ratio of test samples is 110:40, in order to predict the security of the network, the prediction of knowledge is closer to the true value, and the complexity of multi-level security is predicted. Use unusual forests. The tree returns the most recommended part, which is a more realistic assessment of network security. The experimental results show that considering the network security situation, the prediction performance of this method is closer to the actual value, and the performance is better than the other two methods. Therefore, perception of multi-level security situations can be effectively predicted using random access memory. It is proved that random forest is faster and more efficient in network security.

Publisher

Walter de Gruyter GmbH

Subject

Computer Networks and Communications,General Engineering,Modeling and Simulation,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel network security situation assessment technology for zero-day attacks based on improved adversarial autoencoder;International Conference on Algorithms, High Performance Computing, and Artificial Intelligence (AHPCAI 2023);2023-12-07

2. A Multi-Feature Fusion and Situation Awareness-Based Method for Fatigue Driving Level Determination;Electronics;2023-06-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3