Towards a Machine Learning Based Situational Awareness Framework for Cybersecurity: An SDN Implementation

Author:

Nikoloudakis Yannis,Kefaloukos IoannisORCID,Klados Stylianos,Panagiotakis Spyros,Pallis Evangelos,Skianis Charalabos,Markakis Evangelos K.ORCID

Abstract

The ever-increasing number of internet-connected devices, along with the continuous evolution of cyber-attacks, in terms of volume and ingenuity, has led to a widened cyber-threat landscape, rendering infrastructures prone to malicious attacks. Towards addressing systems’ vulnerabilities and alleviating the impact of these threats, this paper presents a machine learning based situational awareness framework that detects existing and newly introduced network-enabled entities, utilizing the real-time awareness feature provided by the SDN paradigm, assesses them against known vulnerabilities, and assigns them to a connectivity-appropriate network slice. The assessed entities are continuously monitored by an ML-based IDS, which is trained with an enhanced dataset. Our endeavor aims to demonstrate that a neural network, trained with heterogeneous data stemming from the operational environment (common vulnerability enumeration IDs that correlate attacks with existing vulnerabilities), can achieve more accurate prediction rates than a conventional one, thus addressing some aspects of the situational awareness paradigm. The proposed framework was evaluated within a real-life environment and the results revealed an increase of more than 4% in the overall prediction accuracy.

Funder

Horizon 2020

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference50 articles.

1. ENISA Threat Landscape 2020—Data Breach https://www.enisa.europa.eu/publications/enisa-threat-landscape-2020-data-breach

2. ENISA Threat Landscape 2020—Information Leakage https://www.enisa.europa.eu/publications/information-leakage

3. An OpenNCP-based Solution for Secure eHealth Data Exchange

4. Acceleration at the Edge for Supporting SMEs Security: The FORTIKA Paradigm

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3