Photocatalytic Degradation of Dichlorvos in Visible Light byMg2+-TiO2Nanocatalyst

Author:

Siva Rao T.1,Segne Teshome Abdo1,Susmitha T.1,Balaram Kiran A.1,Subrahmanyam C.2

Affiliation:

1. Department of Inorganic and Analytical Chemistry, School of Chemistry, Andhra University, Visakhapatnam 530003, India

2. Department of Chemistry, Indian Institute of Technology Hyderabad, Hyderabad 500007, India

Abstract

Photocatalytic activity of TiO2was studied by doping with magnesium (Mg2+-TiO2) with varying magnesium weight percentages ranging from 0.75–1.5 wt%. The doped and undoped samples were synthesized by sol-gel method and characterized by X-ray diffraction (XRD), N2adsorption-desorption (BET), X-ray photoelectron spectroscopy (XPS), UV-visible diffuse reflectance spectroscopy (DRS), and scanning electron microscopy (SEM). The XRD data has shown that anatase crystalline phase in Mg2+-TiO2catalysts, indicating that Mg2+ions did not influence the crystal patterns of TiO2. The presence of magnesium ions in TiO2matrix has been determined by XPS spectra. DRS spectra showed that there is a significant absorption shift towards the visible region for doped TiO2. The SEM images and BET results showed that doped catalyst has smaller particle size and highest surface area than undoped TiO2. The photocatalytic efficiency of the synthesized catalysts was investigated by the photocatalytic degradation of aqueous dichlorvos (DDVP) under visible light irradiation, and it was found that the Mg2+-doped catalysts have better catalytic activity than undoped TiO2. This can be attributed that there is a more efficient electron-hole creation in Mg2+-TiO2in visible light, contrary to undoped TiO2which can be excited only in UV irradiation. The effect of dopant concentration, pH of solution, dosage of catalysts, and initial pesticide concentration has been studied.

Funder

Ethiopian Government

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3