An investigation of Ca-doped MgO nanoparticles for the improved catalytic degradation of thiamethoxam pesticide subjected to visible light irradiation

Author:

Khalid Huma,Haq Atta ul,Fawad Zahoor Ameer,Irfan Ali,Zaki Magdi E. A.

Abstract

AbstractThe remediation of pesticides from the environment is one of the most important technology nowadays. Herein, magnesium oxide (MgO) nanoparticles and calcium-doped magnesium oxide (Ca-doped MgO) nanoparticles were synthesized by the co-precipitation method and were used for the degradation of thiamethoxam pesticide in aqueous media. Characterization of the MgO and Ca-doped MgO nanoparticles were performed by XRD, SEM, EDX, and FT-IR analysis to verify the synthesis and variations in chemical composition. The band gap energy and crystalline size of MgO and Ca-doped MgO nanoparticles were found to be 4.8 and 4.7 eV and 33 and 34 nm respectively. The degradation of thiamethoxam was accomplished regarding the impact of catalyst dosage, contact time, temperature, pH, and initial pesticide concentration. The pH study indicates that degradation of thiamethoxam depends on pH and maximum degradation (66%) was obtained at pH 5 using MgO nanoparticles. In contrast, maximum degradation (80%) of thiamethoxam was observed at pH 8 employing Ca-doped MgO nanoparticles. The percentage degradation of thiamethoxam was initially increasing but decreased at higher doses of the catalysts. The degradation of the pesticide was observed to be increased with an increase in contact time while high at room temperature but decreased with a temperature rise. The effect of the initial concertation of pesticide indicates that degradation of pesticide increases at low concentrations but declines at higher concentrations. This research study reveals that doping of MgO nanoparticles with calcium enhanced the degradation of thiamethoxam pesticide in aqueous media.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3