Effectiveness of Friction Dampers in Seismic and Wind Response Control of Connected Adjacent Steel Buildings

Author:

Malhotra Anshul1,Roy Tathagata1ORCID,Matsagar Vasant1ORCID

Affiliation:

1. Multi-Hazard Protective Structures (MHPS) Laboratory, Department of Civil Engineering, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110 016, India

Abstract

Effectiveness of friction dampers (FDs) is investigated for connected dynamically similar and dissimilar steel buildings under uncorrelated seismic ground motion and wind excitations. The steel buildings involving moment-resisting frame (MRF) and braced frame (BF) are varied from five storeys to twenty storeys, which are connected by different configurations of the FDs. The steel buildings without and with bracing systems are modeled as plane frame structures with inertial masses lumped at each joint node. The FDs are modeled an element having yield force equal to slip load, with force-deformation behavior as elastic-perfectly plastic material. The dynamic responses of the unconnected and connected steel buildings are obtained in terms of top floor displacement and acceleration under the considered ground motion and wind excitations. It is concluded that the FDs help minimizing the gap between two adjacent buildings having utilized the space to connect the buildings. Moreover, the effectiveness of the FDs in terms of response reduction in dynamically dissimilar buildings is more than that in the similar buildings under the considered excitation scenarios. However, the effectiveness of the installed devices varies significantly under the multiple loading scenarios. Finally, the separation gap may be reduced by ∼30%, which would eventually minimize structural pounding as well as utilize the space for effective construction. Hence, important essential guidelines are outlined for structures installed with such passive control devices against such multiple scenario loadings.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3